skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Raillard, Lea"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The models that participated in the Coupled Model Intercomparison Project (CMIP) exhibit large biases in Arctic sea ice climatology that seem related to biases in seasonal atmospheric and oceanic circulations. Using historical runs of 34 CMIP6 models from 1979 to 2014, we investigate the links between the climatological sea ice concentration (SIC) biases in September and atmospheric and oceanic model climatologies. The main intermodel spread of September SIC is well described by two leading EOFs, which together explain ∼65% of its variance. The first EOF represents an underestimation or overestimation of SIC in the whole Arctic, while the second EOF describes opposite SIC biases in the Atlantic and Pacific sectors. Regression analysis indicates that the two SIC modes are closely related to departures from the multimodel mean of Arctic surface heat fluxes during summer, primarily shortwave and longwave radiation, with incoming Atlantic Water playing a role in the Atlantic sector. Local and global links with summer cloud cover, low-level humidity, upper or lower troposphere temperature/circulation, and oceanic variables are also found. As illustrated for three climate models, the local relationships with the SIC biases are mostly similar in the Arctic across the models but show varying degrees of Atlantic inflow influence. On a global scale, a strong influence of the summer atmospheric circulation on September SIC is suggested for one of the three models, while the atmospheric influence is primarily via thermodynamics in the other two. Clear links to the North Atlantic oceanic circulation are seen in one of the models. 
    more » « less
  2. Abstract The THINICE field campaign, based from Svalbard in August 2022, provided unique observations of summertime Arctic cyclones, their coupling with cloud cover, and interactions with tropopause polar vortices and sea ice conditions. THINICE was motivated by the need to advance our understanding of these processes and to improve coupled models used to forecast weather and sea ice, as well as long-term projections of climate change in the Arctic. Two research aircraft were deployed with complementary instrumentation. The Safire ATR42 aircraft, equipped with the RALI (RAdar-LIdar) remote sensing instrumentation and in-situ cloud microphysics probes, flew in the mid-troposphere to observe the wind and multi-phase cloud structure of Arctic cyclones. The British Antarctic Survey MASIN aircraft flew at low levels measuring sea-ice properties, including surface brightness temperature, albedo and roughness, and the turbulent fluxes that mediate exchange of heat and momentum between the atmosphere and the surface. Long duration instrumented balloons, operated by WindBorne Systems, sampled meteorological conditions within both cyclones and tropospheric polar vortices across the Arctic. Several novel findings are highlighted. Intense, shallow low-level jets along warm fronts were observed within three Arctic cyclones using the Doppler radar and turbulence probes. A detailed depiction of the interweaving layers of ice crystals and supercooled liquid water in mixed-phase clouds is revealed through the synergistic combination of the Doppler radar, the lidar and in-situ microphysical probes. Measurements of near-surface turbulent fluxes combined with remote sensing measurements of sea ice properties are being used to characterize atmosphere-sea ice interactions in the marginal ice zone. 
    more » « less